
 
 

 
 
 
 

Journal of Mechanical Science and Technology 22 (2008) 1716~1725 
      www.springerlink.com/content/1738-494x

DOI 10.1007/s12206-008-0603-6 

Journal of 
Mechanical 
Science and 
Technology 

 
Random forests classifier for machine fault diagnosis 

Bo-Suk Yang1,*, Xiao Di1 and Tian Han2 
1School of Mechanical Engineering, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Busan 608-739, South Korea 

2School of Mechanical Engineering, University of Science and Technology Beijing,  
30 Xueyuan Road, Haidian District, 100083, Beijing, China 

 
(Manuscript Received August 21, 2007; Revised May 16, 2008; Accepted June 4, 2008) 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Abstract 
 
This paper investigates the possibilities of applying the random forests algorithm (RF) in machine fault diagnosis, 

and proposes a hybrid method combined with genetic algorithm to improve the classification accuracy. The proposed 
method is based on RF, a novel ensemble classifier which builds a number of decision trees to improve the single tree 
classifier. Although there are several existing techniques for faults diagnosis, the application research on RF is mean-
ingful and necessary because of its fast execution speed, the characteristics of tree classifier, and high performance in 
machine faults diagnosis. The proposed method is demonstrated by a case study on induction motor fault diagnosis. 
Experimental results indicate the validity and reliability of RF-based diagnosis method. 
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1. Introduction 

Rotating machinery plays an important role in 
modern industry, and is equipped in many crucial 
departments. A potential problem is that its break-
down will result in a huge loss. Therefore, fault diag-
nosis of machines is gaining importance in industry 
because of its capability to increase reliability and to 
decrease possible loss of production. Efficient and 
accurate fault classification is critical to machinery 
operating in normal condition. 

In recent years, a number of classifiers have been 
reported in machine fault diagnosis such as artificial 
neural networks (ANNs), support vector machines 
(SVMs), rule-based induction, case-based reasoning, 
etc. The proposed techniques and their extended re-
search increase the intelligence, precision and appli-
cability in the diagnosis domain. While the passion 
for developing fault diagnosis methods is increasing, 
a number of obstacles still exist: 

·Different kinds of faults may result in a certain 
symptom. 

·Because of the background noise, some faults 
are difficult to distinguish in the machine. 

·There are a number of subassemblies with rotat-
ing machinery and a high level internal interac-
tion between these subassemblies such as bear-
ings, rotor, etc. 

Hence, the machine fault diagnosis method which 
is employed to make hypotheses should be powerful 
enough to classify the malfunctions in a correct way. 
The critical issue in classification is how to integrate 
the classification power to achieve higher classifica-
tion accuracy. To do that, improving the capability of 
diagnosis is the main motivation to inspire researchers 
synchronizing existent technologies and exploring 
new theories.  

Ensemble classification methods train several clas-
sifiers and combine the decision of a set of classifiers 
by weighted or unweighted voting process to classify 
unknown examples. An ensemble classifier is gener-
ally found to be more accurate than any of the indi-
vidual classifiers making up the ensemble [1]. The 
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most widely used ensemble methods are bagging (an 
acronym of bootstrap aggregating) [2] and boosting 
[3]. Bagging is based on training many classifiers on 
bootstrap samples from the training set, which has 
been shown to reduce the variance of the classifica-
tion [4]. Boosting was introduced by Schapire [5] as a 
method for boosting the performance of a weak learn-
ing algorithm. Boosting uses iterative re-training, 
where the incorrectly classified samples are given 
increased weighting as the iteration progresses. 
Therefore, it generally reduces both the variance and 
the bias of the classification and has been shown to be 
a very accurate classification method [6]. However, it 
has various drawbacks: it is very slow, it can over-
train and it is sensitive to noise [7]. 

Random forests algorithm (RF), which was intro-
duced by Breiman [8], is a general term for ensemble 
methods using tree-type classifiers. RF builds a large 
number of decision trees [9, 10] out of a sub-dataset 
from a unique original training set by using bagging, 
which is a meta-algorithm to improve classification, 
and regression models according to stability and clas-
sification accuracy. Bagging reduces variance and 
helps to avoid over-fitting synchronously. This pro-
cedure extracts cases randomly from original training 
data set and the bootstrap sets are used to construct 
each of the decision trees in the RF. Each tree classi-
fier is named a component predictor. The RF makes 
decisions by counting the votes of component predic-
tors on each class and then selecting the winner class 
in terms of the number of votes to it [11].  

RF has been employed in various fields such as 
land cover [12], drug discovery [13] and geographic 
data [4, 14]. The possibility of using RF in machine 
fault diagnosis application is considered [15]. RF 
provides good performance in applications in these 
fields and can be a competitor for rotating machinery 
fault diagnosis, because of these distinctive features 
[8]: 

·It is unexcelled in accuracy among current algo-
rithms. 

·It runs efficiently on large data bases. 
·It can estimate the importance of each variable 

in the classification. 
·It has methods for estimating missing data and 

maintains accuracy when a large proportion of 
the data are missing. 

·It computes proximities between pairs of cases 
that can be used in clustering, locating outliers, 
or five interesting views of the data.  

·It generates an internal unbiased estimate of the 
generalization error as the forest building pro-
gresses. 

In this paper, we confirm the possibilities of using 
RF in machine fault diagnosis and propose an opti-
mized RF method combined with genetic algorithm 
(GA) to improve the classification accuracy. To in-
crease the diagnosis accuracy, we acquire the data of 
three-direction vibration signals as the original inputs 
of the system. And a number of feature parameters in 
time and frequency domains and regression coeffi-
cients are calculated to extract helpful information 
and remove the background noise of the data. Then 
RF diagnosis system detects certain faulty type based 
on these features. It is an effective approach to pro-
mote the capability of the diagnosis system [16]. Ex-
perimental results show the optimized RF-based 
method achieves a very high accuracy by combining 
RF with GA.  
 

2. Random forest 

RF, which is derived from decision tree classifier is 
an assembled method; it grows trees using CART 
(classification and regression trees) methodology to 
maximum size and without pruning. Fig. 1 shows the 
construction of an RF. This section gives a brief de-
scription of the building blocks for CART-based RF 
(RF-CART) explored in this paper. 

 
2.1 CART methodology  

CART [17] grows classification and regression 
trees to predict continuous dependent variables (re-
gression) and categorical predictor variables (classifi-
cation). There are four basic steps in CART method- 
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Fig. 1. Construction of random forest. 
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ology. At the first step, a tree is built by using recur-
sive splitting of nodes. Each terminal node is assigned 
to a certain class, judged by class probability distribu-
tion of the dependent variable at terminal node. The 
assignment of a predicted class to each node occurs 
whether or not that node is subsequently split into 
child nodes. The second step consists of stopping the 
tree growing process. The final two steps, tree prun-
ing and optimal tree selection, are ignored because 
RF grows trees freely without any pruning process. 

 
2.1.1 Tree building  
The tree building process begins with departing the 

root node into binary nodes by a very simple question 
of the form, x ≤ d? Here x is variables in the data set 
and d is a real number. Initially, all observations are 
located in the root node. CART implements a com-
puter-intensive algorithm that searches for the best 
split at all possible split points for each variable. The 
methodology which CART uses for building trees is 
known as binary recursive partitioning. Adopting the 
Gini diversity index as a splitting rule, the tree build-
ing process is as follows: 

Step 1: CART splits the first variable at all of its 
possible split points, at all of the values the variable 
assumes in the sample. At each possible split point of 
a variable, the sample splits into binary or two child 
nodes. Cases with a “yes” response to the question 
posed are sent to the left node and those with “no” 
responses are sent to the right node. 

Step 2: CART then applies its goodness-of-split 
criteria to each split point and evaluates the reduction 
in impurity that is achieved by using the formula:  

( ) ( ) ( ) ( ), L L R Ri s t i t p i t p i t∆ = − ⎡ ⎤ − ⎡ ⎤⎣ ⎦ ⎣ ⎦   (1) 
where s is a particular split, pL is the proportion of the 
observations at node t which go into the left child 
node tL, pR is for the right node tR similar with pL. i(tL) 
and i(tR) are impurity of left and right nodes respec-
tively. 

Step 3: CART selects the best split of the variable 
as that split for which the reduction in impurity is 
highest. Three steps above are repeated for each of 
the remaining variables at the root node. 

Step 4: CART then ranks all of the best splits on 
each variable according to the reduction in impurity 
achieved by each split and selects the variable and its 
split point that most reduces the impurity of the root 
or parent node. 

Step 5: CART then assigns classes to these nodes 
according to the rule that minimizes mis-classification 
costs. CART has a built-in algorithm that takes into 
account user-defined variable misclassification costs 
during the splitting process. The default is unit or 
equal misclassification costs. 

Because the CART procedure is recursive, steps 1 - 
5 are repeatedly applied to each non-terminal child 
node at each successive stage. 

 
2.1.2 Stopping tree building 
CART stops the splitting process when:  
·There is only one observation in each of the 

child nodes; 
·All observations within each child node have the 

identical distribution of predictor variables, mak-
ing splitting impossible. 

·The user sets an external limit on the number of 
levels in the maximal tree previously. 

Standing by these steps, a CART algorithm-based 
decision tree without pruning and optimizing will be 
built. 

 

2.2 Random forests algorithm (RF) 

RF can improve classification accuracy resulting 
from growing an ensemble of trees and making them 
vote for the most promising class. A convenient 
method to build the ensembles is by random vectors 
which are generated via random selection procedure 
from integrated training set. The constituent in this 
method is that we prepare k random vectors, Θk, 
which are independent of the past random vectors Θ1, 
Θ2, Θ3, …, Θk-1 but with the same distribution to build 
the trees among the RF. The corresponding individual 
classifier is noted by C (X, Θk). For example, in the 
bagging processing the random vector Θ as the N 
observations randomly draws out from entire training 
data proportionally where N is the number of observa-
tions of training data. And then they vote for the most 
popular class. Breiman names these procedures as 
RFs. A definition drawn from original paper is avail-
able here [8]. 

Definition 1 An RF is a classifier consisting of a 
collection of tree structured classifiers {C (X, Θk), k = 
1, …} where the Θk is independent identically dis-
tributed random vectors and each tree casts a unit vote 
for the most popular class at input X. 
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2.2.1 Two randomized procedures in RF tree building  
As mentioned above, RF enhances the classifica-

tion accuracy compared with decision tree classifier 
significantly. It is the reason that RF applies two ran-
domized procedures when it builds trees. Each tree is 
built as follows. Firstly, assume that the number of 
cases in the training set is N and the number of vari-
ables in the classifier is M. Select the number of input 
variables that will be used to determine the decision at 
a node of the tree. This number, m, should be much 
less than M(m<< M). Secondly, choose a training set 
by choosing N samples from the training set with 
replacement. And then, for each node of the tree ran-
domly select m of the M variables on which to base 
the decision at that node. Calculate the best split 
based on these m variables in the training set. Finally, 
each tree is fully grown and not pruned. 

Two distinctive randomized procedures exist 
among the four steps below. That is, RF extracts a 
fixed quantity from a training set randomly, or names 
it bagging process [2]. Each base classifier in the en-
semble is trained on a bootstrap from the entirety of 
available data. However, each of these bootstrap rep-
licates tends to leave out roughly one-third of the 
sample. Each classifier in the ensemble is thus trained 
on roughly two-thirds of the original data. Conse-
quently, each element in the sample of size n trains 
roughly (2/3)k of all classifiers in the ensemble so that 
it can be used to validate the remaining k/3 classifiers 
(Fig. 2) where n is the number of training data, k is 
the total number of single tree classifier. This part of 
data is named out-of-bag data to get an unbiased es-
timate of the test set error of an individual tree. The 
rest of the data is used to build the single tree classi-
fier.  
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Fig. 2. Schematic of bagging using the decision tree as the 
base classifier. 

After the bagging processing, the other randomized 
procedure is appeared in node splitting during the tree 
classifier being built. Different from normal CART-
like decision tree splitting algorithm, CART within 
RF algorithm searches only in n variables which are 
small number and drawn at random from all M vari-
ables instead of entire variables.  

The research of Breiman states why these two ran-
domized procedures make classification accuracy 
increase effectively: Improvement will occur for un-
stable procedures where a small change in training set 
can result in large change between component classi-
fiers and classifier trained by entire training set. In RF, 
whatever the bagging processing or the random selec-
tion of variables to split the node both make differ-
ence in individual tree and forests. Therefore, these 
two sources of randomness are most important fea-
tures of RF. 

 
2.2.2 Convergence of RF 
RF adopts an ensemble of decision trees and de-

termines the categorical classes by majority vote algo-
rithm. Thus, a serious consideration of over-fitting is 
necessary for testing RF performance. Normally an 
over-fitting will occur where learning is performed 
for too long or where training examples are rare; the 
learner may be limited in very specific random fea-
tures of the training data that has no causal relation 
with the target function. But RF can avoid the over-
fitting completely [2]. To affirm this point, we define 
a margin function first. 

Given an ensemble of a series of classifiers C1 (X), 
C2 (X), …, Ck (X), and with the training set drawn at 
random from the distribution of the random vector Y, 
X, define the margin function as 

 
( ) ( )( )

( )( )
,

max
k k

j Y k k

mg Y av I C Y

av I C j≠

= =

− =

X X

X
  (2) 

 
where X is input metric, avk is the average number of 
votes at X, Y for the corresponding class and I (·) is 
the indicator function. The margin measures the ex-
tent to which the average number of votes at X, Y for 
the right class exceeds the average vote for any other 
class. The larger the margin, the more confidence in 
the classification. 

According to this function, the generalization error 
is given by: 
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( )( ), , 0YPE P mg Y∗ = <X X   (3) 
 

where PX,Y indicates the probability which is over the 
X, Y space. 

Theorem 1 As the number of trees increases, for 
almost surely all sequences Θ1, PE∗  converges to: 

 
( )( ) ( )( )( ), , max , 0Y j YP P C Y P C jΘ ≠ ΘΘ = − Θ = <X X X  (4) 

 
Theorem 1 is proved with the strong law of large 

numbers and the tree structure. It indicates that it is 
unnecessary for RF to employ common anti-
overfitting methods, for instance, cross-validation, 
early stopping, etc. RF does not overfit when more 
trees are added; meanwhile it results in a limiting 
value of the generalization error. This is another im-
portant feature of RF beside the two randomized pro-
cedures mentioned above. 

 
2.2.3 Accuracy of RF depending on strength and 

correlation 
In the previous section, the anti-overfitting charac-

teristic of RF was proved, but we are more concerned 
about its accuracy. According to the analysis built in 
references, an upper bound of RF can be derived for 
the generalization error in terms of two parameters 
that are measures of how accurate the individual clas-
sifiers are and of the dependence between them. 
These also lead to an in-depth view of how RF works. 
Firstly, we define a margin function and raw margin 
function for RF. 

The margin function for a RF is:  
 

( ) ( )( ) ( )( ), , max ,j Ymr Y P C Y P C jΘ ≠ Θ= Θ = − Θ =X X X  (5) 
 
The raw margin function is:  
 

( ) ( )( ) ( ) ( )( )ˆ, , , , ,rmg Y I C Y I C j YΘ = Θ = − Θ =X X X X  (6) 
 
Distinctively, mr(X, Y) is the expectation of rmg(Θ, 

X, Y) with respect to Θ. And the strength of the num-
ber of individual classifiers C(X, Θ) is: 

 
( ), ,YS E mr Y= X X  

 
where EX,Y is the expected value of margin function 
over X, Y space. 

Then we compute the variance of margin function: 
 

( ) ( )( ) ( )2
var varmr E sd Eρ ρΘ Θ= Θ ≤ Θ   (7) 

 
Write 
 

( ) ( )( )2 2 2
,var , , 1YE E E rmg Y S SΘ ΘΘ ≤ Θ − ≤ −X X  (8) 

 
where ρ  is the mean value of the correlation, sd (⋅) 
is the standard deviation of rmg (Θ, X, Y). 

Considering functions (7), (8) and Chebychev ine-
quality, theorem 2 can be concluded. 

Theorem 2 An upper bound for the generalization 
error is given by 

( )2 21 /PE S Sρ∗ ≤ −   (9) 
Although the bound is likely to be loose, it fulfills 

the same suggestive function for RF as VC-type 
bounds do for other types of classifiers. It shows that 
the two ingredients involved in the generalization 
error for RFs are the strength of the individual classi-
fiers in the forest, and the correlation between them in 
terms of the raw margin functions. There is a conclu-
sion drawn from this upper bound: the smaller this 
ration is, the better performance RF provides. 

 
2.3 Genetic algorithm  

RF can be strengthened by a standard genetic algo-
rithm (GAs) [18] in this paper. GA is a simulation of 
evolution where the rule of survival of the fittest is 
applied to a population of individuals, or it can be 
considered as a parallel search procedure that simu-
lates the evolutionary process by applying genetic 
operators. Compared with other search algorithms, 
GA has been well-known for its superior performance. 
And the most powerful feature of GAs is its great 
simplicity. They do not need too much code and no 
differentiability or continuity requirements to be satis-
fied. The usual GA flowchart (Fig. 3) and steps are 
shown as follows: 

Step 1: Coding: generate an initial population (usu-
ally a randomly string) 

Step 2: Fitness evaluation: apply some function or 
formula to the individuals to get the fitness of each 
individual. 

Step 3: Selection: according to the fitness, indi-
viduals are selected to be the parents of next genera-
tion. 
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Step 4: Crossover: it is used to create two child in-
dividuals from the parent which pass the selection 
successfully via exchanging their chromosomes. 

Step 5: Mutation: it assigns a new value to a ran-
domly chosen gene and is controlled by a mutation 
probability. 

Step 6: Repeat steps 3 to 5 until the evolved result 
satisfies the termination criteria, or a certain fixed 
number of generations are achieved. 

The function of GA is to evaluate the best parame-
ters of RF. Fitness is the criterion which indicates the 
capacity of each individual. In RF the diagnosis accu-
racy rate value is assigned to fitness which represents 
the performance of certain parameters. After generat-
ing the initial population, fitness values are calculated 
and assigned to individuals which include two key 
parameters of RF. The GA proceeds to the next gen-
eration through three genetic operators: selection, 
crossover, and mutation. 

Selection is the most important part of GA. This 
operator impacts on the trend of GA and makes GA’s 
running time shorten. It picks up the excellent parents 
to reproduce the individuals within the limitation. The 
normalization probability for individuals to be se-
lected, Np is described as the following equation: 

 

( ) ( )

( )( )
1 1 ( ) g

s
p N i

s

B iN i
B i

=
− −

  (10) 

 
where i is an individual, Ng is the number of genera- 

 

 
 
Fig. 3. Flowchart of genetic algorithm. 

tion. Bs is probability of selecting best individual from 
the current population.  

The selection probability of each individual is: 
 

( ) ( )( ) ( ) 1 ( ) I i
s sP i N i B i= −   (11) 

 
where I (i) is the sorted index of individuals according 
to the fitness. 

The selection probability stands for the opportunity 
of individuals to be chosen as parents of the next gen-
eration. The new individuals are reproduced by the 
survivals from selection by crossover and mutation 
procedure.  
 

3. Experiments and motor faults classification 

3.1 Data acquisition and feature calculation 

The experiments are designed to simulate six uni-
versal categories of induction motor faults, which are 
broken rotor bar, bowed rotor, bearing outer race fault, 
rotor unbalance, adjustable eccentricity motor (mis-
alignment) and phase unbalance [19]. First, four mo-
tor faults are shown in Fig. 4 as an example. The load 
of the motors can be changed by adjusting the blade 
pitch angle or the number of the blades. The platform 
of these experiments consists of six 0.5 kW, 60 Hz, 4-
pole induction motors, pulleys, belt, shaft and fan 
with changeable blade pitch angle. Detailed informa-
tion is listed in Table 1. 

 
 

 
 
Fig. 4. Faults on induction motor. 
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Table 1. Fault category of induction motors. 
 
Fault condition Fault description Others 

Broken rotor bar 
 
Bowed rotor 
 
Faulty bearing 
 
Rotor unbalance 
 
Eccentricity  
 
Phase unbalance 

Number of broken bar: 
12 ea 

Max. bowed shaft deflec-
tion: 0.075 mm 

A spalling on outer race-
way  

Unbalance mass on the 
rotor 

Parallel and angular 
misalignments 

Add resistance on one 
phase  

Total number of 34 
bars 

Air-gap: 0.25 mm 
 
#6203 
 
8.4 g 
 
Adjusting the bear-

ing pedestal 
8.4% 

 
Table 2. Representation of input features parameters for RF. 
 

Time domain Frequency domain Auto regression

Mean 
RMS 

Shape factor 
Skewness 
Kurtosis 

Crest factor 
Entropy error 

Entropy estimation 
Histogram lower 
Histogram upper 

Root mean square fre-
quency 

Frequency center 
Root variance frequency 

AR coefficients
(a1 ~ a8) 
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Fig. 5. Connection between features and fault categories. 

 
Three AC current probes and another three accel-

erometers were used to measure the stator current of 
three phase power supply and vibration signals of 
horizontal, vertical and axial directions for evaluating 
the RF-based fault diagnosis system. 

After measuring the raw data, a preprocessing is 
implemented on the data to obtain the most important 
features for the RF-based diagnosis methodology.  

Table 3. Information of class and samples. 
 

Class No. Class Training  
samples 

Test  
samples

1 
2 
3 
4 
5 
6 
7 
8 
9 

Angular misalignment
Bowed rotor 

Broken rotor bar 
Bearing outer race fault
Mechanical unbalance

Normal condition 
Parallel misalignment
Phase unbalance (30°)
Phase unbalance (50°)

20 
20 
20 
20 
20 
20 
20 
20 
20- 

10 
10 
10 
10 
10 
10 
10 
10 
10 

Total samples 180 90 

 
Finally, there are 63 features left for the next proce-
dure, induction motor fault diagnosis by using RF. 
The description of feature parameters is shown in 
Table 2. 

Fig. 5 marks eight conditions of a faulty motor and 
one normal condition via selecting two features ran-
domly for three times. The purpose is to explain the 
relation between features and fault categories. It can 
be seen that although selected features are calculated 
for standing difference out among diverse fault cate-
gories, overlap cannot be avoided; in some samples it 
is even serious based on two randomly selected fea-
tures. Generally, some statistical techniques such as 
principle component analysis (PCA), kernel PCA and 
linear discriminant analysis, are employed to com-
press the data again by reducing the number of di-
mensions of the data. But for RF-based system, it is 
wise to do diagnosis without such techniques for two 
reasons. First, information of data has been extracted 
when features are calculated. If dimension-reducing 
technique is employed, it may cause over-
compressing problem of data. Second, according to 
Breiman’s test, RF always gives good performance 
when the data scale is large [8]. Therefore, RF is 
more sensitive to the over-compressing problem. 
Thus, RF finished the diagnostic task without any 
feature extraction methods. 

 
3.2 Fault diagnosis results and discussion 

In this section, RF was tested on the induction mo-
tor fault data. Number and faulty sorts of training and 
testing data are shown in Table 3. The experimental 
results for RF-based method are given in Table 4. 
Confusion matrices for the training data in RF are 
given by Tables 5 and 6, which indicate the accura-
cies of each fault class for training and testing data  



 B.-S. Yang et al. / Journal of Mechanical Science and Technology 22 (2008) 1716~1725 1723 
 

Table 4. Fault diagnosis accuracies based on RF. 
 

No. of trees Split variables Test set accuracy (%) 
200 1 

5 
8 

88.89 
71.11 
81.22 

500 1 
5 
8 

94.44 
75.56 
83.33 

1200 1 
5 
8 

95.56 
72.23 
82.34 

2000 1 
5 
8 

93.33 
73.34 
83.33 

5000 1 
5 
8 

92.23 
72.23 
78.89 

10000 1 
5 
8 

92.25 
74.44 
77.78 

 
Table 5. Accuracy of each fault class for training data with 
907 trees and selecting 1 variable every split. 
 

Class 
No. 1 2 3 4 5 6 7 8 9 Accuracy (%)

1 
2 
3 
4 
5 
6 
7 
8 
9 

20 
0 
0 
0 
0 
0 
0 
0 
0 

0 
20 
0 
0 
0 
0 
0 
0 
0 

0 
0 
20 
0 
0 
0 
0 
0 
0 

0 
0 
0 
20 
0 
0 
0 
0 
0 

0
0
0
0
20 
0
0
0
0

0 
0 
0 
0 
0 
20 
0 
0 
0 

0 
0 
0 
0 
0 
0 
20 
0 
0 

0 
0 
0 
0 
0 
0 
0 
20 
0 

0 
0 
0 
0 
0 
0 
0 
0 
20 

100 
100 
100 
100 
100 
100 
100 
100 
100 

 

 
 
Fig. 6. Classification rate against random split number and 
tree number. 

 
with 907 trees, with selecting 1 variable every split. 

Fig. 5 shows the classification rate according to the 
experiment which represents three characteristics of 
RF very clearly. First, to compare with the number of 

Table 6. Accuracy of each fault class for test data with 907 
trees and selecting 1 variable every split. 
 

Class 
No. 1 2 3 4 5 6 7 8 9 Accuracy (%)

1 
2 
3 
4 
5 
6 
7 
8 
9 

10
0
0
0
0
0
0
0
0

0
10
0
0
0
0
0
0
0

0
0
10
0
0
0
0
0
0

0
0
0
10
0
0
0
0
0

0
0
0
0
9
0
0
0
0

0
0
0
0
1
10
0
0
0

0 
0 
0 
0 
0 
0 
10 
0 
0 

0 
0 
0 
0 
0 
0 
0 
10 
0 

0 
0 
0 
0 
0 
0 
0 
0 
10 

100 
100 
100 
100 
90 
100 
100 
100 
100 

 
component classification trees, the parameter, random 
split number at each node, is more sensitive to the 
classification accuracy. Hence a prudential searching 
procedure is necessary to find the best split variables 
number by an experimental way. Second, if the split 
variables number is decided, the sum of individual 
tree classifiers should achieve an appropriate quantity 
to get a better performance. Lastly , when we increase 
trees until a high number, for example 5000 or 10000, 
there is no over-fitting occurring but a little undulat-
ing exists.  

Table 6 indicates that incorrect diagnosis of RF-
based methodology often occurs at a certain fault 
category. So we can apply some assistant diagnosis 
method which is a function in that specific kind of 
fault to improve the diagnosis precision. 

In general, the normal RF has achieved satisfactory 
fault diagnosis accuracy. But it should be noticed that 
two parameters, the number of trees and random split 
number, which greatly affect the classification result 
are set manually. It means accuracy of normal RF 
depends on a researcher’s experience. This situation 
exists at almost all the applications of RF. So that 
applying the GA to do the parameter optimization is 
necessary. The effect of this cooperation is proved by 
using the same data. According to the previous re-
search, in order to reduce execution time of a GA 
program and find the optimized point synchronously, 
the number of trees and random split number are lim-
ited in the range from 500 to 1500 and from 1 to 10, 
respectively. 

Fig. 6 shows the trace information of every genera-
tion. Fitness adopts the classification accuracy of the 
test data set. The solid line is the best fitness value 
and the other one is mean fitness value of each gen-
eration. The risen and convergent trend of mean fit-
ness value indicates that GA well cooperates with RF-
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based methodology on the motor fault diagnosis, and 
the best fitness value lays out the optimization point, 
which is 907 trees and 1 random split created by 9th 
generation. The classification accuracy at this point 
achieves 98.89%, 3.33% higher than the best value of 
normal RF. It means GA can clearly enhance the 
capability of RF. 

As shown in Table 7, we have also investigated the 
accuracy of other classifiers, adaptive resonance the-
ory-Kohonen neural network (ART-KNN) [16], SVM 
[20] and CART classification tree [17]. Classification 
accuracies were obtained as 95.56% for RF only and 
98.89% for RF optimized by GA (RFOGA), while 
the classification accuracies were 86.67% for ART-
KNN, 87.15% for SVM and 77.78% for CART. It 
can be seen from the results that RFOGA and RF 
only achieves higher classification rates than ART-
KNN, SVM and CART. RF has greatly increased the 
capability of tree classification method, to 95.56% 
from 77.78% for CART. This comparative result 
means all we have done is significant and further 
research is important and necessary. 
 

4. Conclusions 

The purpose of this paper is to confirm the possi- 
 

Table 7. Overall classification accuracy of each classifier. 
 

Classifier Overall accuracy (%) 

ART-KNN 
SVM 
CART 

RF only 
RFOGA 

86.67 
87.15 
77.78 
95.56 
98.89 
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Fig. 7. Optimization trace within 40th generation. 

bilities of using the random forests algorithm (RF) in 
machine fault diagnosis and propose a hybrid method 
combined with genetic algorithm to improve the clas-
sification accuracy. The proposed method is based on 
RF, a novel ensemble classifier which builds a large 
number of decision trees to improve the single tree 
classifier. Although there are several existing tech-
niques for faults diagnosis, the research on RF is 
meaningful and necessary because of its fast execu-
tion speed, the characteristic of tree classifier, and 
high performance in machine fault diagnosis. Evalua-
tion of the RF-based method has been demonstrated 
by a case study on induction motor fault diagnosis. 
Experimental results indicate the validity and reliabil-
ity of the RF-based fault diagnosis method. In this 
paper, the RF and optimized RF-based fault diagnosis 
method of rotating machinery were investigated. The 
performance of two methods was proved by the fault 
diagnosis test of an induction motor. The optimized 
approach attains a high accuracy rate of diagnosis, 
98.89%. The comparison result also shows that the 
optimized RF-based method is competitive with other 
classification method.  

The extended research will focus on two parts. 
First part is to improve this hybrid method RFOGA: 
GA is not only for the parameter optimization, it also 
can be used to select the best combination of sub-
classification trees from the forest to get a more accu-
rate result. In the second part, we will decrease the 
redundancy of the RF and try other optimization algo-
rithm or more effective voting principle. The ex-
tended research will focus on decreasing the redun-
dancy of the RF and try other optimization algorithm 
or more effective voting principle. 
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